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Abstract

We propose an econometric framework that accounts for the effects of both observed and unobserved

characteristics of social networks on individuals’ decision to undergo treatment in counterfactual

models based on potential outcomes. We show that network peer effects provide exogenous variation

to identify the marginal treatment effect (MTE) and the marginal policy-relevant treatment effect

(MPRTE). Monte Carlo experiments demonstrate that ignoring the influence of social interactions

on an individual’s decision in counterfactual analysis can lead to misspecification, substantially

biasing both the MTE and MPRTE estimates. We apply the proposed methodology to the college

attainment model in the US, using Add-Health data that contain high school friendship networks.

The results indicate that not controlling for high school friendship network peer effects misidentifies

the marginal return to attending college, as well as the marginal effect of policies aimed at improving

college attendance.
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1 Introduction

The influence of social networks on decision-making behavior is a well-researched topic, with

empirical studies covering a wide range of areas such as education (Kramarz and Skans, 2014;

Sacerdote, 2001), health (Kremer and Levy, 2008; Christakis and Fowler, 2007), and financial

behavior. The literature provides evidence that individuals are influenced by their peers when

making decisions, and this influence can have significant implications for their outcomes.

Most studies have focused on a binary decision setting such as college attendance1 or ob-

served outcome framework such as labour market outcome.2 However, little is still known on the

role of peer effects in counterfactual analysis, specifically in identifying the marginal treatment

effect (MTE) and the marginal policy-relevant effect (MRPTE). These effects are important for

policymakers and practitioners in evaluating the effectiveness of interventions and policies; e.g.,

see Heckman and Vytlacil (1999, 2001); Heckman et al. (2006). Further research is needed to

understand the mechanisms through which social networks influence decision-making, the con-

ditions under which peer effects are most pronounced, and the extent to which these effects can

be leveraged to improve outcomes. Recent advances in machine learning and network analysis

techniques offer promising avenues for further research in this area.

This paper focuses on the generalized Roy model (Roy, 1951; Quandt, 1972) and studies

the identification of the MTE and MPRTE when peers influence a binary treatment decision.

Specifically we incorporate endogenous friendship network formation into the treatment deci-

sion, and estimate the latent treatment decision and network formation models simultaneously

using Bayesian procedures. This novel approach allows for a better understanding of the role

of peer effects in decision-making and outcomes.

The literature on peer effects (e.g., see Moffitt et al., 2001) has identified three types of peer

influences: endogenous, exogenous, and correlated effects. The endogenous effect refers to the

direct influence of an individual’s peers on their outcome, while the exogenous effect captures

the influence of the characteristics of an individual’s peers on their outcome. The correlated

effect embeds homophily and environmental effects. The three peer effects can jointly influence

an individual’s decision or affect their outcomes (Manski, 1993; Glaeser et al., 2003). However,

identifying them simultaneously is challenging due to the “reflection problem,”3 which assumes

that individuals interact in groups where group members have an equal influence on their peers.

Manski (2013) discusses the challenges associated with identifying the causal effects of treatment

1See Kramarz and Skans (2014); Sacerdote (2001).
2See Goldsmith-Pinkham and Imbens (2013b).
3i.e, the difficulty to empirically isolate endogenous peer effects from exogenous peer effects as both are often

strongly correlated.
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in the presence of social interactions, such as peer effects. He argues that standard methods used

in the literature for estimating treatment effects, such as instrumental variables or regression

discontinuity, may not accurately capture the true effects of treatment when social interactions

are present.

Lee (2007); Bramoullé et al. (2009) introduce network fixed effects into the outcome equa-

tion to identify in order to control for the correlated effects. However, Goldsmith-Pinkham

and Imbens (2013b); Hseih and Lee (2016) show that this approach does not control for the

unobserved within-network characteristics that are important factors of both the decision to

take on treatment and networks formation. Moreover, controlling for network effects in a bi-

nary treatment framework can be challenging due to the nonlinearity of the outcome variable

(Blume et al., 2011). The standard probit estimation used in binary choice models normalizes

the variance of the errors to unity in the treatment equation, which imposes restrictions on both

the network formation and the peer effects. Researchers may instead use the linear probability

approach (e.g., see Patacchini and Arduini, 2016; Calabrese and Elkink, 2014). This can be

very problematic because it ignores the continuous nature of the underlying latent treatment

decision variable.

The paper proposes a Bayesian estimation framework that can be used to jointly estimate

the treatment decision and network formation models. The treatment decision model specifies

the probability that an individual will receive treatment based on their observed character-

istics and the latent treatment decision variable. The network formation model specifies the

probability that two individuals will form a connection in the network based on their observed

characteristics and the treatment decision variable. The framework allows for the filtering of the

latent treatment decision variable based on observed characteristics, which makes it possible to

use the Bayesian maximum likelihood method. This approach avoids the limitations imposed by

probit estimation and takes into account the continuous nature of the latent treatment decision

variable. Overall, the proposed Bayesian estimation framework provides a flexible and powerful

approach for jointly modeling the treatment decision and network formation processes in social

networks.

The remaining of the paper is organized as follows. Section 2 presents the conceptual the-

oretical framework, the econometric models for both the treatment decision and the friendship

formation. Model assumptions and the estimation method are presented in Section 3. A Monte

Carlo experiment is shown in Section 4 and the proposed methodology is applied to the educa-

tional attainment model in Section 5. Section 6 concludes.
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2 Conceptual framework

We consider the canonical counterfactual model4 with a binary treatment S ∈ {0, 1} and a

scalar, real-valued outcome Y ∈ Y ⊂ R. The observed outcome production is modelled as

Y = Y1S + Y0(1− S), (2.1)

where (Y0, Y1) are the potential outcomes under no treatment and under treatment. The treat-

ment decision is latent, i.e., we observe S = 1 if S∗ ≥ 0 and S = 0 if S∗ < 0, where S∗ represents

the net benefit of receiving treatment. Let X ∈ X ⊂ RdX denote a vector of exogenous pre-

treatment covariates. In the returns to schooling application for instance, S is an indicator for

enrollment in college, Y is log wage, and X includes observable individual characteristics which

affect wages– such as parental education, location, appearance, age. The potential outcome

model is given by

Yj = µj(X) + Uj , j = 0, 1; (2.2)

µj(X) := E[Yj |X] and Uj is the error term affecting Yj of the causation state j ∈ {0, 1}.

We assume that the population of interest, G , is comprised ofm groups, i.e., G = {G1, . . . ,Gm}.

For instance, the population of interest can be students and the groups are formed using school

enrollments, whereby students from the same school belong to the same group. We suppose

that each group Gg, g = 1, . . . ,m, has a network (i.e., a group of individuals interacting for their

collective or mutual interest) that is observed over time, and that these networks are indepen-

dent across groups. Let Ggt : Ngt×Ngt be the network of group g at time t ∈ {1, . . . , T}, where

Ngt is the number of individuals in network Ggt and T is the sample period.

2.1 Treatment model with network formation

2.1.1 Treatment model

Let S∗git denote the latent treatment decision at time t of individual i in network Ggt. Individual

i in network g takes on treatment at time t (i.e., Sgit = 1) if and only if S∗git ≥ 0. Let S∗gt =(
S∗g1t, . . . , S

∗
gNgtt

)′
be the Ngt × 1 vector of latent treatment decision variables. Assuming that

the decision to take on treatment for an individual in a given network Gg, g = 1, . . . ,m, is

influenced by his network’s peers, and focusing on the standard linear in parameters setting

4See Roy (1951); Quandt (1972); Carneiro et al. (2011).
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(see Manski, 1993; Moffitt et al., 2001), we model the treatment decision as:

S∗gt = γ1GgtS
∗
gt + Zgtγ2 + GgtZgtγ3 + αgιgt + γ4ξgt − Vgt (2.3)

where Sgit = 1 iff S∗git ≥ 0, i = 1, . . . , Ngt and t = 1, . . . , T, Zgt : Ngt ×K2 contains exogenous

covariates (instruments), ιgt : Ngt × 1 is a vector of ones; ξgt : Ngt × 1 contains unobserved

within network Ggt characteristics affecting the treatment decision, Vgt : Ngt × 1 is a vector of

disturbances. We assume that Vg is continuous with a common strictly increasing cumulative

density function (cdf) FV (·), and that Vg and ξg are independent given Xg.
5 Some covwariates

in Xg may depend on Ujg, j = 0, 1, but all instruments in Zg are strictly exogenous, i.e., Zg is

independent of Ujg, j = 0, 1, Vg, and ξg. In general, Zgt contains all exogenous covariates in Xg.

Model (2.3) captures five types of effects. The first is the endogenous peer effect, measured

by γ1, representing the average treatment benefit that an individual receives from their network

peers. The second is the direct effect (γ2) which measures the direct impact of exogenous

instruments in Zgt on the decision to take on treatment. The third is the exogenous peer effect

captures by the parameter γ3. This effect represents the average impact of an individual’s peers’

characteristics on the outcome being studied. The fourth is the correlated or group fixed effect

captures by the parameter αg. And finally, the fifth is the effect of the unobserved within network

characteristics captures by the parameter γ4. Identifying all five effects simultaneously can be

a challenging task. Therefore, it is important to carefully analyze and understand the variables

at play, as well as the possible interactions between them, in order to accurately identify and

measure each effect. Additionally, depending on the specific situation, some effects may be more

important or influential than others, further complicating the identification process.

Standard treatment effect models only control for the direct effect6 and, to some extent, the

correlated effects. Other network features, such as the endogenous peer effect, the exogenous

peer effect, and the effect of unobserved within-network characteristics, are often not controlled

for. This potentially creates an omitted variable problem. By incorporating the influence of

individuals’ networks on their decision to take on treatment, specification (2.3) systematically

addresses this issue. Importantly, the inclusion of ξgt not only controls for unobserved group

factors but also addresses concerns related to self-selection into groups, as some groups may be

formed based on their characteristics (Hseih and Lee, 2016).

Define µS,g(Zgt,Ggt) := γ1GgtS
∗
gt + Zgtγ2 + GgtZgtγ3 + αgιgt + γ4ξgt. Then the probability

that individual i in network g receives treatment at time t, conditional on Zgit and Ggt, is given

5It is important to note that Vg may still depend on the errors Ujg, j = 0, 1 of the outcome equation (2.2).
6See e.g. Heckman and Vytlacil (1999, 2001); Heckman et al. (2006).
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from (2.3) by

Pgit(Zg,Ggt) := P
[
Sgit = 1|Zgit,Ggt

]
= FV

[
µS,g(Zgit,Ggt)

]
. (2.4)

Pgit(Zg,Ggt) is the mean scale utility function (see e.g. McFadden, 1974) which plays a crucial

role in the identification of MTE and MPRTE.

Let US = FV (V ). US is uniform on [0, 1] by construction and its realizations correspond to

the quantiles of V. An individual i in network g will receive treatment at time t, conditional on

Zgit and Ggt, if its scale utility in doing so exceeds its US value, i.e.,

Sgit = 1 iff Pg(Zgit,Ggt) ≥ USgit = FV (Vgit). (2.5)

Remark. Note that estimating (2.3) comes with challenges. On one hand, it differs fun-

damentally from the standard setting (in particular from Eq.(6.1) of Goldsmith-Pinkham and

Imbens, 2013b) in the sense that the dependent variable S∗gt is latent. This adds to the econo-

metric challenge of estimating (2.3). Indeed, applying a probit estimation, for example, restricts

the covariance matrix of the error ηgt = (INgt−γ1Ggt)
−1Vgt in the reduced-form7 equation (2.6)

to an identity matrix;

S∗gt = αg(INgt − γ1Ggt)
−1ιgt + (INgt − γ1Ggt)

−1Zgtγ2 + (INgt − γ1Ggt)
−1GgtZgtγ3

+ γ4(INgt − γ1Ggt)
−1ξgt − ηgt. (2.6)

Since ηgt depends on γ1 and Ggt, such restriction also constrains the formation of network

Ggt as well as the endogenous peer effect measure γ1. These identifying restrictions may not

be sustained in observed data, and to avoid imposing them, we propose a data dependent

method to filter the latent dependent variable S∗gt from a truncated multivariate normal (TMVN)

distribution, upon exploiting the Gibbs sampling technique in Geweke (1991).

2.1.2 Network formation

We assume that network Gg in (2.3) is dynamic, and to model friendship formation, we use the

following framework of Goldsmith-Pinkham and Imbens (2013b).

Let Dgt =
[
Dij
gt

]
1≤i,j≤Ngt

be a symmetric adjacency matrix of network Ggt : Dii
gt = 0 for

7As long as |γ1| < 1, (2.3) implies (2.6) (i.e., (2.6) is a reduced-form equation). To see it, note first that the
determinant of the matrix INgt − γ1Ggt is det(INgt − γ1Ggt) =

∏
j=1

(1 − γ1λj
gt), where λj

gt, j = 1, . . . , Ngt, are

the eigenvalues of Ggt and satisfy −1 < λj
gt ≤ 1 (see e.g. Case, 1991, Footnote 5). Therefore, INgt − γ1Ggt is

invertible if and only if |γ1| < 1; i.e., (2.3) can be expressed as (2.6) if |γ1| < 1.
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all i; and for all i 6= j, Dij
gt = 1 if individuals i and j are friends and Dij

gt = 0 otherwise. Let

Mgt =
(
M i
gt

)
1≤i≤Ngt

denote a Ngt-dimensional vector with elements representing the number

of individual i’s friends8 at time t (i.e., M i
gt =

∑Ngt

j=1D
ij
gt). At time t and given Dgt, network

Ggt is defined as a row-normalized adjacency matrix:

Ggt = diag(Mgt)
−1Dgt :=

[
Gijgt
]
1≤i,j≤Ngt

; Gijgt = Dij
gt/M

i
gt. (2.7)

Let U ijgt represent the net benefit of individual i to form a friendship link with individual j in

network Gg at time t. We assume the decision of individuals i and j to form a link is the result

of two choices. Both individuals need to agree to form the link, and will do so if they view the

net utility from the link as positive, so Dij
gt = 1[U ijgt > 0] · 1[U jigt > 0], where 1[·] is the indicator

function. Following Goldsmith-Pinkham and Imbens (2013b) we model U ijgt as:

U ijgt = θ′1c
i
gt + θ′2c

j
gt+θ

′
3c
ij
gt + θ4D

ij
g,t−1 + θ5F

ij
g,t−1 + δ|ξigt − ξ

j
gt|+ εijgt, (2.8)

where θk (k = 1. . . . , 5) and δ are unknown parameters; cigt and cjgt represent the observed

individual specific variables which may affect friendship formation at time t; and cijgt represents

dyad-specific variables which may be either dummy variables indicating the same characteris-

tics between individuals i and j (e.g. race or sex) or the difference between two continuous

individual characteristics (e.g. difference in age, difference in household income); εijgt is an error

term assumed uncorrelated with the unobserved within network characteristics ξigt and ξjgt, the

observed individual specific characteristics cigt, c
j
gt and cijgt, as well as the error Vgt of the treat-

ment model (2.3). Both Dij
g,t−1 and F ij

g,t−1 characterize the network in the previous period. In

particular, Dij
g,t−1 is a dummy variable indicating whether i and j were friends in the previous

period, while F ij
g,t−1 is a dummy variable representing whether i and j had friends in common

in the previous period. Differences in the unobserved characteristics at time t towards every

potential friendship (i, j) (i.e., |ξigt− ξ
j
gt|) are some of the key factors of friendship formation. In

particular, a low value of |ξigt− ξ
j
gt| is likely to result in a friendship pair (i, j) at time t, while a

higher value indicates that i and j are unlikely to be friends at time t. As such, the parameter

δ measures the intensity of friendship and is expected to be negative. In (2.8), ξigt is a scalar

for a given i but the model could be generalized to account for multivariate unobserved factors

(see e.g., Hseih and Lee, 2016, Eq.(2)).

Remark. Model (2.8) describes a dynamic network formation, so, at least two data points

on the networks are required to fully identify friendship relations. While this dynamic network

8Individuals with no friends are discounted from the model so that M i
gt > 0.
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formation may be simplistic (as highlighted by Jackson, 2013) because it implies that an individ-

ual’s preference for a relationship with another person does not depend on any of the network

structure except for whether they had some friends in common in an earlier period, a more

complex specification of (2.8) may not be tractable at least from an econometric estimation

viewpoint (Goldsmith-Pinkham and Imbens, 2013a). Despite its simplicity, model (2.8) allows

to investigate a range of issues related to endogeneity of networks, measurement error in links,

and heterogeneity in peer effects. Many factors contributing to minimize a potential bias in

the estimates are accounted for. In particular, the effect of homophily is controlled through the

inclusion of the unobserved characteristics ξgt, while transitivity in link formation is controlled

through the inclusion of Fg,t−1. Also, Graham (2013) argues that a network formation model

should also account for degree heterogeneity– some individuals are naturally ”good friends”

and thus give greater utility to friendship. In (2.8), degree heterogeneity is controlled through

the inclusion of the observed characteristics of the networks (i.e., cigt, c
j
gt for all (i, j)). Finally,

although there is no explicit cost for friendship formation in (2.8), it can be introduced by

allowing for cost functions that depend on Ggt and capture a capacity constraint whereby no

node has degree exceeding some positive finite constant D̄ (see e.g., Leung, 2014).

The identification of notwork formation models often requires the assumptions under which

asymptotic theory (Weak Law of Large Numbers (WLLN) and Central Limit Theorem (CLT))

is valid for the network statistics. In particular, let Ngt =
{

(i, j) ∈ Ggt

}
denote the set of

nodes of network Gg at time t and define the node statistic 1
Ngt

∑Ngt

i=1 ψi(Ggt), where ψi(Ggt) is

a function depending on network Ggt only through the set of links between all nodes connected

to node i. The identification of (2.8) boils down to the condition under which the WLLN and

the CLT are valid for 1
Ngt

∑Ngt

i=1 ψi(Ggt); see Leung (2014). In our network model (2.8), we

are particularly interested in the application of the WLLN and the CLT to network moments

corresponding to the probability of a friendship linkage, i.e., P[Dij
gt = 1]. Chandrasekhar (2016);

Leung (2014) show that this generally requires the sequence
{
ψi(Ggt), i ∈ Ngt

}
to be α-mixing,

so that individuals’ decision to form links in a given network are sufficiently uncorrelated. This

α-mixing property can be achieved under the following conditions.

1. No coordination. Let W ij
gt = {cigt, c

j
gt, c

ij
gt, D

ij
g,t−1, D

ji
g,t−1, F

ij
g,t−1, F

ji
g,t−1, ξ

i
gt, ξ

j
gt}. From

(2.8), the net benefit of individual i to form a friendship link with individual j in network

Gg at time t is U ijgt(W
ij
gt ; θ, δ). Given θ, δ and Wg, no coordination means that the sets

of nodes that are not connected under any equilibrium make friendship linkage decisions

independently, i.e., isolated friendship networks have no incentive to coordinate on their

friendship decisions.
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2. Homophily. Irrespective of endogenous network effects on the net benefit of an individual

to form a friendship with his peers, it is typically not worthwhile to form a friendship

directly to someone who is very far away in homophilic characteristics.

Remark. Let d(i, j) represents differences in characteristics in which individuals display

homophily. For example, in our empirical application on high school friendship networks for-

mation model, d(i, j) contains elements such as differences in age (|AGEig − AGEjg |), Math

Grade (|MathGDi
g −MathGDj

g|), etc., between individuals i and j. As long as individuals are

typically unlikely to form a link with those far away in these characteristics, the homophily

condition will hold so that we can express U ijgt(W
ij
gt ; θ, δ) as

U ijgt(W
ij
gt ; θ, δ) = U ijgt( d(i, j)︸ ︷︷ ︸

distance

, z(Ggt, w)︸ ︷︷ ︸
endogenous

, f(w)︸ ︷︷ ︸
exogenous

; θ, δ) (2.9)

where z(·) represents non-homophilic endogenous network effects (which may depend on the

network Ggt) and f(·) represents non-homophilic exogenous network effects. As such the ho-

mophily assumption implies that:

lim
d(i,j)→∞

U ijgt(d(i, j), z̄, f(w); θ̄, δ̄) < 0 (2.10)

for some f(w) ≤ f̄ and the probability of f(w) > f̄ is sufficiently low.

3. Thin Tails. The distribution of the error term εijgt in the network formation model (2.8)

has thin tails such that P[εijgt > r] ≤ Ce−κr for some C > 0 and κ > 0. This condition is

satisfied in our model as εijgt is assume to follow a logistic distribution.

4. Increasing Domain. supg maxi∈Ngt(#j ∈ Ngt : |d(i, j) < r0|) < ∞, for some r0 > 0.

This property says that the largest number of individuals that are at most a distance r0

away from any other individual is finite. Otherwise, communities are small relative to the

overall network.

5. Diversity. For any individual i and distance r, there exists a set of nodes S containing

i such that any k ∈ S satisfies d(i, k) < r and d(k, l) ≥ 9κ−1 log r for l /∈ S and κ is

given in the Thin Tails condition (i.e., condition 3. above). This condition ensures

that there is sufficient diversity in the distance characteristics. Diversity ensures that the

α-missing coefficient α(i, j) decays at a sufficiently fast rate to guarantee the validity of

the CLT. This is a sufficient condition to prove that P[Dij
gt = 1] → 0 as d(i, j) → ∞.

In our empirical application on high school friendship networks formation in the US, we
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use several homophilic indicators such as parents education, personality variables, School

achievement, age, race and gender to ensure that there is sufficient diversity in our network

formation model.

3 Estimation

We implement the Bayesian maximum likelihood estimation that requires specifying the likeli-

hood functions of data and parameters.

3.1 Likelihood functions

Let Wgt =
{
W ij

gt |(i, j) ∈ Ggt

}
and Cgt =

{
cigt, c

j
gt, c

ij
gt|(i, j) ∈ Ggt

}
, where

W ij
gt = {cigt, c

j
gt, c

ij
gt, D

ij
g,t−1, D

ji
g,t−1, F

ij
g,t−1, F

ji
g,t−1, ξ

i
gt, ξ

j
gt}.

In order to derive the likelihood functions, we make the following assumptions.

Assumption 3.1.

(i) Given Wgt, each link of network Ggt is independent of other links.

(ii) The errors εgt in (2.8) are i.i.d. across pairs (i, j), and are uncorrelated with both Wgt

and the errors (U0t, U1t) in (2.2). In addition, the conditional distribution of εijgt, given

Wgt, is a standard logistic distribution for all pairs (i, j).

(iii) (V i
gt, ξ

i
gt)
′ |Dg,t−1,Fg,t−1,Cgt

i.i.d.∼ N

(
0,

[
σ2
Vg

0

0 1

])
for all g and t.

Assumptions 3.1-(i):(iii) are commonly used in the social networks literature; see e.g. (Goldsmith-

Pinkham and Imbens, 2013b; Hseih and Lee, 2016). Assumption 3.1-(i) implies that an individ-

ual’s preference for a relationship with another individual does not depend on any of the network

structure except for whether they had some friends in common in an earlier period. The current

network formation can thus be inferred link-by-link, which simplifies the computational burden

but can be restrictive due to homophily, transitivity of relations, or clustering (Jackson, 2008).

To minimize any potential bias this may cause, we address the problems of: (1) homophily by

controlling for the unobserved network within characteristics (ξgt); (2) transitivity of relations

by controlling for the characteristics of the network in the previous period (Fgt); and (3) degree

heterogeneity by controlling for the network observed characteristics (cigt, c
j
gt).

Under Assumption 3.1, a given network Gg may shrink or enlarge over time, although new

friendship relations are assumed not to violate the independence of links. This may also be
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restrictive as new friendship relations may be motivated and enabled by dyad-specific charac-

teristics such as race, wealth, or gender considerations (Jackson, 2013), which must then be

controlled for in (2.8).

Assumption 3.1-(ii) requires the errors of the network formation model (2.8) be uncorrelated

with all other regressors in that model, as well as the errors of the potential outcome equation

(2.2) and the latent treatment decision model (2.3). A similar assumption can be found in

Goldsmith-Pinkham and Imbens (2013b) and Hseih and Lee (2016). Note that the errors of

the potential outcomes model (2.2) may still be correlated with that of the latent treatment

decision model (2.3).

Assumption 3.1-(iii) enables the implementation of the ML method. Note that under this

assumption, the covariates Xg of the potential outcome equation (2.2) need not be strictly

exogenous. The variance of ξig is normalized to unity because it is not identified neither in the

treatment model (2.3) nor in the friendship formation model (2.8); see Hseih and Lee (2016).

As such, the parameters of both models can only be identified up to the variance of ξig.

Let θ = (θ′1, θ
′
2, θ
′
3, θ4, θ5)

′ and define

ψijgt(θ, δ) := θ′1c
i
gt + θ′2c

j
gt + θ′3c

ij
gt + θ4D

ij
g,t−1 + θ5F

ij
g,t−1 + δ|ξigt − ξ

j
gt|. (3.1)

Given W ij
gt , the probability of friendship formation, P[Dij

gt = 1|W ij
gt ] = P[U ijgt > 0, U jigt > 0|W ij

gt ,

is captured9 under Assumption 3.1 by:

qg
(
Dij
gt|W

ij
gt ; θ, δ

)
:= qg(θ, δ) = Λ

(
ψijgt(θ, δ)

)
Λ
(
ψjigt(θ, δ)

)
, (3.2)

where Λ(·) is the cdf of the standard logistic random variable.

Then, the likelihood function of Dgt (or network Ggt), conditional on Wgt is:

P ξg
(
Ggt|Wgt; θ, δ

)
=
∏
i 6=j

[
qg(θ, δ)

]Dij
gt
[
1− qg(θ, δ)

]1−Dij
gt
. (3.3)

Since W ij
gt includes the unobserved within network characteristics ξigt, P

ξg
(
Ggt|Wgt; θ, δ

)
de-

pends on ξigt. Therefore, the likelihood function of network Ggt, conditional on Wgt \ {ξgt}, is

obtained by integrating (3.3) over ξgt, i.e.

P
(
Ggt|Wgt \ {ξgt}; θ, δ

)
=

∫
ξgt

P ξg
(
Ggt|Wgt; θ, δ

)
φ(ξgt)dξgt, (3.4)

9See also Goldsmith-Pinkham and Imbens (2013b); Hseih and Lee (2016).
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where φ(·) is the density function (pdf) of a N(0, INgt) random variable.

Similarly, we can use Bayes rule to express the joint likelihood function of the latent treat-

ment decision S∗gt and the network Ggt conditional on Zgt and Wgt as:

P ξg
(
S∗gt,Ggt|Zgt,Wgt; γ, αg, σ

2
Vg , θ, δ

)
= P ξg

(
S∗gt|Zgt,Wgt; γ, αg, σ

2
Vg

)
× P ξg

(
Ggt|Wgt; θ, δ

)
,

(3.5)

where P ξg
(
S∗gt|Zgt,Wgt; γ, αg, σ

2
Vg

)
is the likelihood function of S∗gt conditional on Zgt and Wgt.

Thus, the joint likelihood function of S∗gt and Ggt, conditional on Zgt and Wgt \ {ξgt} is also

obtained by integrating (3.5) over ξgt, i.e.

P
(
S∗gt,Ggt|Zgt,Wgt \ {ξgt}; γ, αg, σ2Vg , θ, δ

)
=

∫
ξgt

P ξg
(
S∗gt|Zgt,Wgt; γ, αg, σ

2
Vg

)
× P ξg

(
Ggt|Wgt; θ, δ

)
φ(ξgt)dξgt.

(3.6)

Note that given Wgt and (θ′, δ)′, P ξg
(
Ggt|Wgt; θ, δ

)
can be evaluated. However,

P ξg
(
S∗gt|Zgt,Wgt; γ, αg, σ

2
Vg

)
cannot be evaluated even conditional on (Zgt,Wgt) and (γ′, αg, σ

2
Vg

)′.

This is because S∗gt is not observed. Therefore, we propose a methodology to filter the latent

index S∗gt first, and then use these values to evaluate (3.6).

3.2 Filtering the latent treatment variable

We employ the Gibbs sampling technique of Geweke (1991) to simulate S∗gt from a multivariate

truncated normal (TMVN) distribution. We then apply the truncated regression method to

derive P ξg
(
S∗gt|Zgt,Wgt; γ, αg, σ

2
Vg

)
. This approach also allows us to filter the unobserved within

network characteristics ξgt within the Bayesian framework, and to condition on these filtered

values in the estimation so that no numerical integration over all ξigt, i = 1, . . . , Ngt (which would

have been computationally demanding) is required. To expand further, observe first from (2.6)

that

S∗gt | Zgt,Wgt ∼ TMVN(µgt,Σηgt) (3.7)

under Assumption 3.1-(i)&(iii), where Σηgt := σ2Vg
[
(INgt − γ1Ggt)

′(INgt − γ1Ggt)]
−1 is the co-

variance matrix of ηgt and µgt = E
(
S∗gt|Zgt,Wgt; γ, αg

)
is given by

µgt = αg(INgt − γ1Ggt)
−1ιgt + (INgt − γ1Ggt)

−1Zgtγ2 + (INgt − γ1Ggt)
−1GgtZgtγ3

+ γ4(INgt − γ1Ggt)
−1ξgt. (3.8)
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The Geweke’s (1991) method is based on the well-known result that sampling S∗gt from a

TMVN(µgt,Σηgt) subject to the inequality constraints a ≤ S∗gt ≤ b is equivalent to sampling

τgt from N(0,Σηgt) under the linear constraints b ≤ τgt ≤ b̄, where b = a−µgt, b̄ = b−µgt, and

then constructing the sample for S∗gt as S∗gt = µgt + τgt. We apply this algorithm to build the

sample for τgt from the conditional distribution of τ igt given τ
(−i)
gt for all i = 1, . . . , Ngt, where

τ
(−i)
gt = τgt \ τ igt denotes the vector formed with the components of τgt other than τ igt. It is easy

to show that

E(τ igt|τ
(−i)
gt ) = γ

(−i)
gt τ

(−i)
gt with γ

(−i)
gt = −(ωiigt)

−1ω
(−i)
gt , (3.9)

where ωijgt is the (i, j)th element of Σ−1ηgt and ω
(−i)
gt is the ith row of Σ−1ηgt excluding the ith

element. Therefore, τ igt can be generated as:

τ igt = γ
(−i)
gt τ

(−i)
gt + higtν

i
gt, (3.10)

where higt = (ωiigt)
−1/2 and νigt ∼ N(0, 1) for all i and g. As b ≤ τgt ≤ b̄, it follows from (3.10)

that νigt satisfies the constraints:

(higt)
−1(bi − γigtτ

(−i)
gt ) < νigt < (higt)

−1(b̄i − γ(−i)gt τ
(−i)
gt ), (3.11)

where bi = −∞, b̄i = −µigt if Sigt = 0 (i.e. S∗
i

gt ≤ 0) and bi = −µigt, b̄i = +∞ if Sigt = 1

(i.e. S∗
i

gt > 0). With the restrictions in (3.11), νigt ∼ N(0, 1) can be simulated and τ igt can be

generated following (3.10). Thus the sample for S∗gt = µgt+τgt can be built using this approach.

Now, we can derive the conditional distribution of S∗gt in (3.6) by applying the above trun-

cation method to (2.6). Specifically, let Σηgt =
(
Σij
ηgt

)
1≤i,j≤Ngt

and µgt =
(
µigt
)
1≤i≤Ngt

, where

Σηgt and µgt are defined in (3.7)-(3.8). Then, the conditional truncated normal distribution of

S∗gt =
(
S∗

i

gt

)
1≤i≤Ngt

given Zgt and Wgt is:

S∗
i

gt |Zgt,Wgt ∼


N
(
µigt,Σ

ii
ηgt

)
truncated at the left by 0 if Sigt = 1

N
(
µigt,Σ

ii
ηgt

)
truncated at the right by 0 if Sigt = 0,

(3.12)

for all i = 1, . . . , Ngt. Letting Φ(·) denote the cdf of the standard normal random variable, we

12



can express the conditional density of S∗
i

gt |Zgt,Wgt from (3.12) as:

f(s∗
i

gt|Zgt,Wgt; γ, αg, σ
2
Vg ) =



φ
(
s̃∗
i

gt−µ̃
i
gt

)
Σii

1/2
ηgt

Φ(µ̃igt)
truncated from above at 0 if Sigt = 1

φ
(
s̃∗
i

gt−µ̃
i
gt

)
Σii

1/2
ηgt

(
1−Φ(µ̃igt)

) truncated from below at 0 if Sigt = 0,

(3.13)

where µ̃igt = Σii
ηgtµ

i
gt and s̃∗

i

gt = Σii−1

ηgt s
∗i
gt. The likelihood function P ξg

(
S∗gt|Zgt,Wgt; γ, αg, σ

2
Vg

)
is

then given by

P ξg
(
S∗gt|Zgt,Wgt; γ, αg, σ

2
Vg

)
=

Ngt∏
i=1

f(s∗
i

gt|Zgt,Wgt; γ, αg, σ
2
Vg) (3.14)

=
∏

{i: sigt=1}

φ
(
s̃∗

i

gt − µ̃igt
)

Σii1/2
ηgt Φ(µ̃igt)

∏
{i: sigt=0}

φ
(
s̃∗

i

gt − µ̃igt
)

Σii1/2
ηgt

(
1− Φ(µ̃igt)

) .
Given Zgt, Wgt, γ, αg, and σ2Vg , P

ξg
(
S∗gt|Zgt,Wgt; γ, αg, σ

2
Vg

)
can be evaluated using (3.14).

Then, the joint likelihood function of interest (3.6) can be evaluated given Zgt, Wgt, γ, αg, σ
2
Vg
,

θ and δ.

We implement a joint estimation of the network formation and treatment models using

a Bayesian method.10 The algorithm of this estimation for a two period (T = 2) friendship

formation model is presented in Section B of the Supplemental Appendix.

3.3 MTE and MPRTE measures

For an individual in network Gg, the marginal treatment effect (MTE), conditional on Xg = xg

and USg = uSg, is given by

MTEGg

(
xg, uSg

)
= E(Y1g − Y0g|Xg = xg, USg = uSg), (3.15)

where Y1g − Y0g = µ1(Xg) − µ0(Xg) + U1g − U0g measures the return to treatment.11 Clearly,

MTEGg

(
xg, uSg

)
is influenced by networks’ characteristics through uSg values. As USg ∼ U[0,1],

MTEGg

(
xg, uSg

)
varies across uSg values even when evaluated at mean Xg values. Therefore,

tracing MTEGg

(
xg, uSg

)
over the values of uSg given Xg = xg indicates how much the return

to treatment varies with different quantiles of the treatment equation error for individuals

willing to take on treatment. clearly, not controlling for the effects of network Gg on the

decision to take on treatment can lead to misidentifying uSg, and thus inconsistently estimating

10See also Goldsmith-Pinkham and Imbens, 2013b; LeSage and Pace, 2009; Hseih and Lee, 2016.
11Note that MTEGg

(
xg, uSg

)
is the mean return to treatment conditional on Xg = xg for individuals with

mean scale utility value P (Zg,G) = uSg who are indifferent between being treated or not.

13



MTEGg

(
xg, uSg

)
. The practical estimation of the MTE is often done using he method of

local instrumental variables (see Heckman and Vytlacil, 1999, 2001), thus we shall adapt this

methodology in this study.

The MPRTE is defined by considering a class of policies that change the probability of

treatment without affecting directly the potential outcomes and the error term in the treatment

decision model. Precisely, let S̃ denote the treatment choice after the policy change and P̃

the corresponding probability of S̃ = 1 after the policy change, i.e., S̃ = 1[P̃ ≥ US ]. Also, let

Ỹ = S̃Y1 + (1− S̃)Y0 be the observed outcome under the alternative policy. The mean effect of

the change from a baseline policy to an alternative policy per net individual shift is the policy

relevant treatment effect (PRTE) defined (see e.g. Heckman and Vytlacil, 2005), given Gg and

Xg = xg, as :

PRTEGg(xg) =

∫ 1

0
MTEGg(xg, uSg)ωPRTE (uSg)duSg, (3.16)

where ωPRTE

(
uSg)

)
≡ ωPRTE (uSg) =

FP (uSg)−FP̃ (uSg)

EF
P̃
(P )−EFP

(P ) , FP (·) and FP̃ (·) denote the distributions

of P and P̃ respectively. In (3.16), it is implicitly assumed that EFP̃
(P ) 6= EFP

(P ), i.e., the

fraction of individuals switching into treatment is not exactly offset by the fraction of those

leaving the treatment, as PRTEGg(xg) is ill-defined otherwise. This condition insures that the

policy has a monotonic effect on participation. Integrating over the full unit interval [0, 1]– i.e.,

identifying the PRTE in the data– requires that the support of the propensity scores be [0, 1].

This is often not possible because PRTE is defined for discrete changes from a baseline policy to

a fixed alternative policy. Heckman and Vytlacil (2005) suggest the marginal version of PRTE

in (3.16), MPRTE, which measures a marginal change from the baseline policy. Specifically,

consider a sequence of policies indexed by a scalar parameter α, where α = 0 indicates the

baseline policy. Let Pα denote the probability of treatment with the policy α, where P0 is

computed from the data. Define the corresponding PRTE for each α from the baseline policy

(α = 0) to policy α as per (3.16). Then, MPRTE is the limit of such a sequence of PRTEs as

α goes to zero.

3.4 Implementation of the Bayesian method

We implemented a joint estimation of the network formation and treatment models using a

Bayesian framework. To simplify the analysis, we used a two-period friendship formation model

and labeled the initial and last periods as ”period 0” and ”period 1,” respectively. For ease of

notation, we omitted the time index in period 1 for the time-varying variables and parameters.
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We normalize the variance of the unobserved network within characteristics as σ2Vg = 1. As a

result, the unknown parameters of the models are θ = (θ′1, θ
′
2, θ
′
3, θ4, θ5)

′, γ = (γ1, γ
′
2, γ
′
3, γ4)

′, αg

and δ. As the estimation method is essentially a full information bayesian maximum likelihood,

we specify prior distributions for these parameters following Hseih and Lee (2016); LeSage and

Pace (2009). Specifically, we assume that

γ1 ∼ U [−1, 1], γ̄ = (γ′2, γ
′
3, γ4, αg)

′ ∼ N(γ0,Γ0); (θ′, δ)′ ∼ N(φ0,Φ0), (3.17)

where φ0 and γ0 are fixed vectors with appropriate sizes, Φ0 and Γ0 are fixed matrices with

appropriate dimensions, and U [−1, 1] stands for uniform distribution with support [−1, 1]. The

prior distribution of γ1 is restricted to [−1, 1] to ensure that INgt − γ1Gg is nonsingular almost

surely. The prior distribution of ξg is

ξig ∼ N(0, 1), i = 1, . . . , Ng. (3.18)

Given (3.17)-(3.18) and observed sample on Zg, Cg, Dg, the conditional prior distribution

of the latent treatment variable S∗g is given in (3.14). Then, the key posterior distributions

needed in the Markov chain Monte Carlo (MCMC) algorithm are constructed sequentially (given

covariates Zg and Xg, and network characteristics Cg, Dg0, and Fg0) as follows.

1. First, we construct the (conditional) posterior distribution of ξig as:

P (ξig|S∗g ,Gg, ξg \ {ξig}, γ̄, θ, δ, σv, αg) ∼ φ(ξig) · P (S∗g ,Gg|ξg, γ̄, θ, δ, αg), (3.19)

where P (S∗g ,Gg|ξg, γ̄, θ, δ, αg) is the likelihood function in (3.6) and φ(·) ≡ pdf of N(0, 1).

2. Similarly, the (conditional) posterior for (θ′, δ)′ can be simplified to

P (θ, δ|G1, . . . ,Gm, ξ1, . . . , ξm) ∝ π(θ, δ) ·
m∏
g=1

P (Gg|ξg, θ, δ), (3.20)

where P (Gg|ξg, θ, δ) is the likelihood function in (3.4) and π(·) is the marginal prior density

of (θ′, δ)′.

3. The (conditional) posterior for γ1 is constructed as

P (γ1|(S∗g ,Gg, ξg, αg)
m
g=1, γ̄) ∼

m∏
g=1

P (S∗g |Gg, ξg, γ1, γ̄), (3.21)

where P (S∗g |Gg, ξg, γ1, γ̄) is obtained by integrating (3.14) over ξg.
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4. Following Albert and Chib (1993), we construct the posterior of γ̄ as:

P (γ̄|(S∗g ,Gg, ξg)
m
g=1, γ1) ∝ N(γ̄; γ0,Γ0) ·

m∏
g=1

P (S∗g |Gg, ξg, γ1, γ̄, αg).

∴ P (γ̄|(S∗g ,Gg, ξg)
m
g=1, γ1) ∝ N(γ̄; γ∗0 ,Γ

∗
0), (3.22)

where γ∗0 = (
∑m

g=1 Z̃
′
gZ̃g + Γ−10 )−1(

∑m
g=1 Z̃

′
gAgS

∗
g + Γ−10 γ0), Z̃g = [ι′g, vec(Zg)

′, ξ′g]
′, Γ∗0 =

(
∑m

g=1 Z̃
′
gZ̃g + Γ−10 )−1, Ag := INg − γ1Gg, and N(x; y,B) is the value at x of a normal

distribution with mean y and covariance matrix B.

We implement the estimation using the MCMC algorithm M = 30, 000 iterations where the first

20, 000 iterations were discarded. Specifically, the MCMC algorithm is described as follows.

MCMC algorithm. At the kth iteration:

1. The Metropolis-Hastings (M-H) algorithm is used to draw samples ξi
(k)

g from the posterior

distribution P (ξig|S∗
(k−1)

g ,Gg, ξ
−i(k−1)

g , γ̄(k−1), θ(k−1), δ(k−1), α
(k−1)
g ) given in (3.19), where

ξ−i
(k−1)

g = (ξ1
(k−1)

g , . . . , ξ
(i−1)(k−1)

g , ξ
(i+1)(k−1)

g , . . . , ξ
N

(k−1)
g

g ). This occurs for every individual

i = 1, . . . , Ng and network g = 1, . . . ,m. Specifically:

(1) Propose ξ̃ig ∼ N(ξi
(k−1)

g , κ2ξ), where κ2ξ is chosen by the user, and let

ξ̃g = (ξ1
(k−1)

g , . . . , ξ
(i−1)(k−1)

g , ξ̃ig, ξ
(i+1)(k−1)

g , . . . , ξ
N

(k−1)
g

g ). The value of κ2ξ is adjusted

to achieve an acceptance rate between 20% and 40%.

(2) With probability equal to a(ξ
(k−1)

g ; ξ̃ig) =

min

{
P (S∗g ,Gg|ξ̃g, γ̄(k−1), θ(k−1), δ(k−1), , α(k−1)

g )

P (S∗g ,Gg|ξ(k−1)g , γ̄(k−1), θ(k−1), δ(k−1), α
(k−1)
g )

·
N(ξ̃ig; 0, 1)

N(ξi
(k−1)

g ; 0, 1)
, 1

}
,

set ξi
(k)

g equal to ξ̃ig; otherwise, set it to ξi
(k−1)

g .

2. M-H procedure is used to sample (θ(k)
′
, δ(k))′ from P (θ, δ|Gg, ξ

(k)
g ) given in (3.20):

(1) Propose (θ̃′, δ̃)′ ∼ N
(
(θ(k−1)

′
, δ(k−1)

′
), κ2θ,δI

)
, where κ2θ,δ is chosen by the user.

(2) With probability equal to a(θ(k−1), δ(k−1); θ̃, δ̃) =

min


m∏
g=1

P (Gg|ξ(k)g , θ̃, δ̃)

P (Gg|ξ(k)g , θ(k−1), δ(k−1))
· N(θ̃, δ̃;φ0,Φ0)

N(θ(k−1), δ(k−1);φ0,Φ0)
, 1

 ,

set (θ(k)
′
, δ(k))′ equal to (θ̃′, δ̃)′; otherwise, set it to (θ(k−1)

′
, δ(k−1))′.

3. γ1 is sampled from P (γ1|S∗(k−1)g ,Gg, ξ
(k)
g , γ̄(k−1), α

(k−1)
g ) in (3.21) using M-H:
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(1) Propose γ̃1 ∼ N(γ
(k−1)
1 , κ2γ1), where κ2γ1 is chosen by the user.

(2) With probability equal to a(γ
(k−1)
1 ; γ̃1) =

min


m∏
g=1

(
P (S∗g |Gg, ξ

(k)
g , γ̄(k−1), γ̃1, α

(k−1)
g )

P (S∗g |Gg, ξ
(k)
g , γ̄(k−1), γ

(k−1)
1 , α

(k−1)
g )

)
· 1(γ̃1 ∈ [−1, 1])

1(γ
(k−1)
1 ∈ [−1, 1])

, 1

 ,

set γ
(k)
1 to γ̃1; otherwise, set it to γ

(k−1)
1 , where 1(·) ≡ indicator function.

4. The Gibbs sampling method is used to draw samples for γ̄(k) =
(
γ
(k)′

2 , γ
(k)′

3 , γ
(k)
4 , α

(k)
g

)′
from the posterior distribution P (γ̄|S∗(k−1)

g ,Gg, ξ
(k)
g , γ

(k)
1 ) in (3.22). The sign of γ4 will

not be determined as |ξig − ξ
j
g| is not affected by a change in sign of ξig or ξjg. To address

this issue, we set γ4 positive using an acceptance-rejection algorithm.

5. S∗
(k)

g is sampled from the TMN distribution P (S∗g |Gg, ξ
(k)
g , γ

(k)
1 , γ̄(k), α

(k)
g ) in (4.11) of the

main paper.

Computing treatment effect measures after ML estimation

1. Propensity scores calculations. The propensity scores for each individual i in network

Gg, i.e., Pi(Z
i
g, Gg), are calculated using the estimated parameters, along with (4.11) in

the main paper.

2. MTEs and MPRTEs calculations. They are computed using the pooled sample of all

networks, so we omit the reference to the group index “g” to simplify the notations. We

distinguish the case where X is independent of (U0, U1, V ) to the one where it is not as

this distinction plays a crucial role in identifying the MTE and PRTE (see Section 2 in

the main paper).

Case 1: Strictly exogenous covariates. In this case, the MTEs are filtered as follows:

(a) The Robinson’s (1988 ) partially linear equations method is applied to obtain esti-

mates of β0 and β1 − β0:

i. The difference between the outcome equation and its expected value is taken to

remove the non-linear component in p = P (Z,G):

Y − E(Y |p) = [X − E(X|p)]β0 + p[X − E(X|p)](β1 − β0). (3.23)

ii. Kernel regressions of the dependent variable and each of the regressors are run

on p in order to estimate the expected values in equation (3.23).
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iii. The kernel regression residuals of the dependent variable are regressed on the

kernel regression residuals of each independent variable to estimate β0 and β1 −

β0.

(b) Following equation (2.11) in the main paper, a local polynomial regression of Y −

Xβ̂0 − pX(β̂1 − β̂0) is run on P to estimate the function K(p),12 and its partial

derivative with respect to p is thus computed. Adding this partial derivative to

X(β̂1 − β̂0) results in an estimate for the MTE:

MTE = X(β̂1 − β̂0) +
dK(p)

dp
.

(c) To compute the MPRTEs, a weighted average of the MTEs is taken across the support

of P (Z,G). The relevant weight is expressed conditional on the value of X and must

be integrated over the distribution of X. Since conditioning on X is computationally

demanding when X contain many covariates, we follow the suggestion of Carneiro

et al. (2011) to condition on the index X(β1−β0). We can thus measure the MPRTEs

using different weighting functions and corresponding policy change. As stated in

Section 2 of the main paper, we focus on three policies indexed by α: (1) a policy

α that directly increases the probability of treatment equally for all individuals, i.e.,

Pα = P (Z,G) + α; (2) a policy α that proportionally increases the probability of

treatment, i.e., Pα = (1 + α)P (Z,G); and (3) a policy α that affects one or more

instruments used in the treatment equation, i.e., Zα = Z + α.

Case 2: Non exogenous covariates. When X is not exogenous, we can only identify

the MTEs conditional on X, as discussed extensively in Carneiro et al. (2011). As for

Case 1, we shall condition on the index X(β1 − β0) rather than X.

(a) The value of X(β1 − β0) is calculated at the 25th and 75th percentile of the distri-

bution of X(β1 − β0).

(b) Holding X(β1− β0) constant at this point, the instruments Z and the network char-

acteristics (observed and unobserved) are allowed to vary.

(c) The MTE is calculated over the portions of the support of P (Z,G) where both

treatment and control are jointly observed as the instruments vary.

(d) The MPRTE is computed as a weighted average of the MTEs for each policy change,

placing weights only on those segments of the MTEs that are identified.

12Fan and Gijbels (1996) recommend using a local quadratic estimator for fitting a first order derivative.
We therefore use a local quadratic estimator with a bandwidth that minimises their proposed residual squared
criterion.
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It is worth noting that for both Case 1 & Case 2, the MPRTEs are calculated conditional

on X, so they are identified even when X is correlated with (U0, U1, V ), while the MTEs

can only be identified for the segments of the support of P (Z,G) where treatment and

control are jointly observed.

4 Simulation experiment

We study the performance of the proposed methodology through a Monte Carlo experiment.

For brevity, we consider a two period (T = 2) friendship formation model, where the initial and

last periods are labeled ‘period 0’ and ‘period 1’ respectively.

The data generation process is such that (U i0, U
i
1, V

i, Xi, Z
∗
1i, Z2i, ξ

i, ci)′ are drawn i.i.d.

across i from a multi-normal distribution with m0 = (0, 0, 0, 1, 0.8, 0, 0.5, 0.2)′ and variance

Σ, where Σ has ones along the diagonal and cross-elements zeros except:

E(U i0U
i
1) = 0.3, E(U i0V

i) = 0.3, E(U i1V
i) = −0.5, (4.1)

E(XiZ
∗
1i) = E(XiZ2i) = 0.2, E(Z∗1iξ

i) = 0.1, E(Z2iξ
i) = −0.2.

E(XiU
i
0) = E(XiU

i
1) ≡ ρx ∈ {0, 0.3}.

As such, we consider a two-period network formation model with the two networks G0 and

G1 having equal size of 250 individuals. The initial network G0 is generated from the sample,

while G1 is constructed using (2.8), where the true parameters of the prior means are:

θ00 = 0.2, θ01 = 0.2, θ03 = (−0.9, 0.5, 0.4)′, θ04 = 0.2, θ05 = 0.1, δ0 = −1.2. (4.2)

Individuals with no friends are removed from the sample. The network formation process is

calibrated to ensure the number of individuals with no friends is less than 20% of the original

sample and the average number of friends is greater than 10.

On average, 7 individuals with no friends are removed from the network, and the remaining

individuals have an average of 13.65 friendship connections. The average dynamics of the

network are given in Table 1. Of the 863 friendships in period 0, 614 (around 2.1% of possible

friendships; see Table 1) remain friends in period 1. Similarly, of the 29,890 untapped friendships

in period 0, only 790 (around 2.71% of possible friendships) are tapped in period 1. Due to the

large number of friendship possibilities (29100), we see more new friendships in period 1 than

existing ones carried from period 0. An example of a generated network is presented in Figure

1. We see that the generated network is relatively dense for the size of the network, due to
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the high number of average friendships. We use this high degree in order to establish stronger

results for the peer effects.

Figure 1: Generated network using (2.8)

Table 1: Dynamic Friendships

Period 1
Friends Not Friends

P
er

io
d

0

Friends 614 (2.1%) 249 (0.85%)

Not Friends 790 (2.71%) 29100 (94.34%)

4.1 Network formation model

Table 2 displays the estimates of the network formation model (2.8). As the model is estimated

using the Bayesian method, the reported estimates are posterior means of the estimated param-

eter distributions (Columns 2 & 4 of the table). Columns 1 & 3 of the table show the network

characteristics and their corresponding coefficients as per model (2.8). The standard errors in

parentheses are bootstrapped.

As shown in the table, all estimates have the expected signs. Except θ4, the estimates of

the network formation model parameters are significant at 1% nominal level. The estimates

of θ1 and θ3k, k = 1, 2, 3 are slightly above the true parameter values, while those of θ4 and

θ5 are slightly below the true parameter values. Also, similarity in unobserved characteristics

estimated coefficient (δ) is negative and highly significant, thus indicating strong homophily

effect on friendship choices. While this effect is reasonably large, it is below the true posterior

mean. The slight discrepancy between the estimated posterior means and the true values is

likely due to the relatively small number of MCMC draws.13

13Computing limitations have impeded the ability to run the estimation with more iterations or with a greater
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Table 2: Posterior Means in Network Formation Model: Model (I)

Variable (coef.) Posterior mean Variable (coef.) Posterior mean

ci (θ1) 0.2422*** Dij
0 (θ4) 0.1416*

(0.0180) (0.0810)

|Zi2 − Z
j
2 | (θ31) −0.8344*** F ij

0 (θ5) 0.0768***
(0.0207) (0.0228)

1
[Zi

1=Z
j
1=1]

(θ32) 0.5470*** ξ (δ) −0.7922***

(0.0417) (0.0486)
1
[Zi

1=Z
j
1=0]

(θ33) 0.6744***

(0.0370)

Bootstrap standard error estimates are in (·).
* p < 0.1, ** p < 0.05, *** p < 0.01.

4.2 Treatment decision model

In this section, we compare the results of the misspecified model where network effects are

omitted from (2.3) (although they are part of the true DGP as described in Section 4) to the

full model that contains all of the network components in (2.3). Hereafter, we refer to the full

model as Model (I) and the misspecified models as Model (II). Comparing the two model enable

us to illustrate the importance of peer effects in identifying treatment effects.

Table 3 presents the estimates (posterior means) of the treatment model for both exogenous

(ρx = 0) and non-exogenous (ρx = 0.3) covariates. As expected, the results are qualitatively

similar regardless of whether X is exogenous (ρx = 0) or not (ρx = 0.3). In both cases, the

estimated endogenous peer effect γ1 is highly significant, highlighting the fact that Model (II),

which does not control for the endogenous peer effect, is misspecified. The group fixed effects are

significant in both Model (I) and Model (II) but are more downward biased in Model (II). None

of the exogenous peer effect, nor the effect of the unobserved network within characteristics,

appears significant in Model (I) probably due to the high standard error estimates. Note however

that with the exception of γ3,2 estimate (which is quite close to zero; −0.0502 for ρx = 0 and

−0.0499 for ρx = 0.3), the other estimates have the expected sign and are quite similar for both

ρx = 0 and ρx = 0.3.

4.3 Marginal treatment effects

We first analyze the results when covariate are strictly exogenous in Section 4.3.1. Section 4.3.2

deals with the case where covariate are not exogenous.

sample size. We run the simulations in parallel on the University of Adelaide’s Phoenix High Performance
Computing service. The simulations with the two networks of size 250 recorded an average running time of 1 day,
14 hours. We note that while the results are reasonable, larger sample size and number of iterations could improve
the accuracy of the estimation. Our algorithm is available and can be adapted accordingly by researchers.
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Table 3: Treatment model estimates

Posterior means: ρx = 0 Posterior means: ρx = 0.3

coefficients Model (I) Model (II) Model (I) Model (II)

γ1 0.5895*** - 0.5579 ** -
(0.1046) (0.1099)

γ2,1 0.6289*** 0.5826*** 0.6334 *** 0.5811***
(0.0802) (0.0640) (0.0801) (0.0600)

γ2,2 0.7155*** 0.8603*** 0.7265 *** 0.8253***
(0.1591) (0.1563) (0.1566) (0.1805)

γ2,3 0.2918* 0.6459*** 0.3054* 0.6645***
(0.1662) (0.0811) (0.1566) (0.0846)

γ3,1 0.1594 - 0.1717 -
(0.1607) (0.1744)

γ3,2 −0.0502 - -0.0499 -
(0.3433) (0.3541)

γ3,3 0.0925 - 0.0966 -
(0.2370) (0.2261)

γ4 0.0814 - 0.1155 -
(0.0827) (0.0810)

α1 −1.1608*** −1.0181*** -1.1579*** −0.9488***
(0.2050) (0.2446) (0.2106) (0.2395)

α2 −1.1419*** −0.9824*** -1.1534*** −1.0002***
(0.1947) (0.2401) (0.1943) (0.2576)

* p < 0.1, ** p < 0.05, *** p < 0.01.

4.3.1 Exogenous covariates

Figure 2 presents the density of the propensity score P (Z,G) given X on the left and the

support of P (Z,G) for S = 1 and S = 0 on the right when covariate X is exogenous, for

both Model (I) and Model (II). The support of P (Z,G) where both treatment and control

are jointly observed corresponds to the region where the MTE is identified. In Figure 2, this

region is interval (0.0443,0.9633) in Model (I), and in the interval (0.0237, 0.8796) in model (II).

Therefore, Model (I) identifies the MTE on the interval (0.0443,0.9633), while Model model (II)

does only on the interval (0.0237, 0.8796). Clearly, the misspecified model with no network,

Model (II), identifies a smaller portion of the MTE, while Model (I), which includes the network

formation, induces a broader spread of propensities over which the MTE can be identified. The

regions of the MTE that are not identified are those areas of higher variance corresponding

to the extreme values of the propensity scores. This illustrates why the traditional treatment

effects measures such as the average treatment effect (ATE) or average treatment effect of the

treated (ATET) cannot be identified, as they require that the common support of P (Z,G) for

both S = 0 and S = 1 be the full interval [0,1]. This, in turn, makes MTE a more practical and

relevant measure of the treatment effect.

The individual MTE estimates can easily be traced across the values of US , where US is

defined in (2.5). Figure 3 shows the plots of these MTEs curves along with the 90% confidence
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Figure 2: Exogenous covariates– supports of P (Z,G): (a) given X (left) & (b) for S = 0 and S = 1 (right)

(a) Model (I) (b) Model (I)

(c) Model (II) (d) Model (II)

Figure 3: MTE curve with 90% confidence bands

Model (I): Exogenous covariates Model (II): Exogenous covariates

bands (dashed red lines) for both models, where the values of the MTEs are computed at the

mean value of the covariate X. We see that a high value of US corresponds to a low probability

of taking on treatment, since at those high values, individuals at the margin have corresponding

high propensity scores P (Z,G), and are thus less likely to take on treatment. Similarly, a
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low value of US corresponds to a high probability of taking on treatment, as individuals with

propensity scores greater than such value are likely to take on treatment. A marginal increase

of P (Z,G) starting from high values of P (Z,G) can induce individuals with high US values

into treatment, while it has no effect on individuals with low US values, since they are likely to

already be in treatment at such high values of P (Z,G). The MTE at these points is defined

as the expected increase in the outcome variable Y when P (Z,G) is varied marginally. In this

version of the model, we clearly see that a high probability of treatment (i.e., a low value of US)

is associated with a high return to treatment (around 90% in each model), with the opposite

observed for a low probability of treatment (around -90%). It is clear from Figure 3 that the

model with network peer effects (i.e., Model (I)) identifies higher returns at low US values than

the misspecified model with no peer effect (i.e., Model (II)). The marginal treatment effect

ranges from 0.9 for low US to -0.8 for high US for Model (I), compared to 0.6 and -1.1 for Model

(II). Most notable is the progressive improvement in the width of the 90% confidence bands for

low US values moving towards the more robust model. In particular, the 90% confidence interval

of the MTEs of Model (II) includes zero at low values of US , while that of Model (I) does not.

As such, there is evidence that the network model enables a more precise identification of the

true returns to treatment where it matters (i.e., at least for low US values).14

The MTE curves in Figure 3 are clearly downward sloping, thus suggesting that individuals

likely select into treatment based on heterogeneous returns in outcomes. We can test the zero

slope hypothesis of the MTE curve at each point as well as the joint hypothesis that this

slope is constant across all values of US ; see e.g. Carneiro et al. (2011). To illustrate how

these tests are implemented, let us focus on the correctly specified Model (I). The tests results

are presented in Table 4. We evaluate the MTE at 26 equally spaced points between 0 and

1 with interval length of 0.04. This enables the computation of the local average treatment

effects (LATEs), defined as the mean of the MTEs of each interval, and the bootstrap tests are

constructed comparing adjacent LATES (see Table 4). The results indicate that the MTE curve

is statistically downward sloping at the 10% nominal level for the middle portion of the curve

(around 0.25 to 0.75). There is more dispersion at the ends of the MTEs curve, and we cannot

statistically reject that the slope is zero. As a result, the p-value for a constant slope across the

whole MTE curve is 0.1333, meaning that we can only reject the constant of the overall slope

at nominal size above 13.33%.

14Note that individuals with high US are unlikely to take on treatment.
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Table 4: Test of Equality of LATEs over different intervals

Ranges of US for LATEj (0,0.04) (0.08,0.12) (0.16,0.20) (0.24,0.28) (0.32,0.36) (0.40,0.44)
Ranges of US for LATEj+1 (0.08,0.12) (0.16,0.20) (0.24,0.28) (0.32,0.36) (0.40,0.44) (0.48,0.52)

Difference in LATEs 0.0502 0.0723 0.0937 0.1145 0.1346 0.1542
p-value 0.5333 0.3000 0.2333 0.1333 0.0667 0.0667

Ranges of US for LATEj (0.48,0.52) (0.56,0.60) (0.64,0.68) (0.72,0.76) (0.80,0.84) (0.88,0.92)
Ranges of US for LATEj+1 (0.56,0.60) (0.64,0.68) (0.72,0.76) (0.80,0.84) (0.88,0.92) (0.96,1)

Difference in LATEs 0.1731 0.1915 0.2093 0.2264 0.2430 0.2589
p-value 0.1333 0.1333 0.1667 0.1667 0.1333 0.1333

joint p-value 0.13333

4.3.2 Non exogenous covariates

We now analyze the case where the covariate X is not exogenous. As discussed in Section

3.4, the MTE is only identified conditional on X when the strict exogeneity assumption on

covariates does not hold. Given X, one can quantify the contribution of the peer effects to the

identification of the MTE.

Indeed, when x is fixed at X = x, one needs external variations to identify the MTE. In

particular, all the variables appearing in the RHS of the treatment model (2.3), except the

latent variable S∗, should provide exogenous variations enabling to identify the MTE. That is,

variations in the instruments Z and the network peer effects identify the MTE. Figure 4 presents

the segments of the support of P (Z,G) over which MTE is identified, as well as the contribution

of each instrument or peer effects for both models. When Z contains many instruments, we

can vary them collectively or individually given value X = x to produce the graphs such as

in Figure 4. Each subfigure shows two curves corresponding to the MTE evaluated at 25th

percentile (bottom) and at the 75th percentile (top) of the distribution of the index X(β1−β0).

Specifically, we start by computing the average X for values of X(β1 − β0) at the the 25th

and 75th percentile of its distribution. The two curves in each subfigure represent the MTE

evaluated at these two values of X(β1 − β0), with the black solid segment representing the

portion of the MTE that is identified. The dashed green line represents the segments of the

MTE we do not identify. In order to draw the line labelled say ‘Z2’, we do not only fix X at the

two mean values referred above, but we also fix all the other instruments at their corresponding

mean values. The red line corresponds to the support of P (Z,G) where the MTE is identified

when all instruments are varied. Similarly, the other lines correspond to the support of P (Z,G)

where the MTE is identified when only a single instrument is varied. As Z1 is a binary variable,

the support associated with varying Z1 is constituted by single points only, represented by black

circles.

Looking at the misspecified Model (II), we see that the overall identified segment (red line)

of the MTE is short at the extremes values of US compared with the preferred Model (I)
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Figure 4: Instrument contribution to the identification of MTEs on the support of P (Z,G)

Model (I): ρx = 0.3 Model (II): ρx = 0.3

with dynamic friendship formation. Considering the contribution of each instrument to the

identification of the MTEs, we see that the segments of the MTE identified by varying only

the peer effects are the ones contributing much to the MTE identification at the extremes

values of US . This highlights the level of misspecification in the baseline Model (II) due to the

exclusion of peer effects. It is worth noting that the contribution of each exogenous peer effect

instrument is very important in identifying the MTEs, although the unobserved within network

characteristics ξ only contribute marginally to the MTEs identification.

4.4 Marginal policy relevant treatment effects

We now focus on estimating the marginal policy relevant treatment effect (MPRTE). Table 5

reports the estimated MPRTE for both models with three different changes in policy, as de-

scribed in Section 3.3. We see that for both, ρx = 0 and ρx = 0.3, Model (I), which incorporates

dynamic network formation, estimates a higher marginal policy effect for individuals induced

into treatment compared with the misspecified Model (II). More importantly, while all policy

changes are statistically significant at nominal levels ranging from 1% to 5% in Model (I), none

of the policy change is statistically significant even at 10% in Model (II).
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Table 5: MPRTE estimates

Exogenous covariates Non-exogenous covariates

Policy Change Model (I) Model (II) Model (I) Model (II)

Zα = Z + α 0.5489** 0.3929 0.6797*** 0.1120
(0.2689) (0.3430) (0.2630) (0.4082)

Pα = P + α 0.5303** 0.3801 0.6680** 0.0973
(0.2637) (0.3451) (0.2637) (0.4030)

Pα = (1 + α)P 0.4222** 0.2986 0.5561*** 0.0554
(0.2083) (0.2973) (0.2083) (0.3315)

* p < 0.1, ** p < 0.05, *** p < 0.01.

5 Empirical application

We apply the proposed method to the college attainment model in the US using the Add Health

data.15 This data contain high school friendship networks from the United States, and thus

allows us to assess the influence of peers on individuals’ decision to attend college, and how this

decision affects wages after college completion. This paper adds to the existing and growing

evidence of peer influence on college attendance decision.16

5.1 Add Health data

The dataset was collected through longitudinal surveys across high schools in the US. Surveys

were conducted for 90,118 individuals in school years 7-12 in representative high schools during

the 1994-1995 school year. A core sample of 20,745 students was selected to take part in a

detailed in-home survey across four waves; wave I: 1994-1995, wave II: 1996, wave III: 2001-

2002 and wave IV: 2008. A saturated sample, comprising of 16 schools where all students within

each school were selected, is part of this core sample. These 16 heterogeneous schools included

two large schools (total enrolment exceeding 3100) and 14 smaller schools (enrolment fewer

than 300 each). One of the large schools is located in a mid-sized town with a predominantly

white enrolment, while the other is located in a metropolitan area and is ethnically diverse.

The smaller schools are a mix of public and private schools located in rural and urban areas.

In waves I and II, students were asked to name up to 10 of their closest friends (5 males, 5

females). We used these friendship rosters to construct high school networks in waves I and II.

Friendships named outside of the selected schools were excluded as the nominated individuals

are not in the sample.

Wave II responses were used to construct most variables for the treatment and outcome

equations, while observed wages and some contextual variables were collected from wave IV.

15The data are restricted and further information is available at “Add Health.”
16See e.g. Kramarz and Skans (2014).
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Individuals who did not take part in all of waves I, II and IV were removed from the sample. We

also removed individuals with no friendship nominations (409 individuals) as they experience

no measurable peer effect. After removing individuals with incomplete data or no friendship

relations, the remaining sample contains 1696 observations across 15 schools. Due to the high-

demanding computation capacity required in the estimation of large networks, we limited our

analysis to the 13 smaller schools. As the influence of peer effects would strengthen if the larger

schools were included, our results can be interpreted as providing lower bounds on peers’ effect.

We also removed friendships between individuals from different schools as these represent less

than 1% of the reported friendships within the overall sample. This further reduced the sample

to a total of 631 individuals and 13 networks.17 While the survey restricts students to naming

10 close friends, only one student in our sample reaches this limit.

The description of the key variables are presented in Table B.1. All variables, except wage

and local income (for which logs are taken), are in levels. In addition to the peer exogenous effect

variables, other instruments in the treatment equation include number of siblings, innovations

in local labour market variables, and the proportion of college education in the local area.

Summary statistics of the variables of the 13 constructed networks are given in Table B.2.

About 71% of individuals in the sample attended college and the sample is predominantly

white individuals (84%) with only 14% of blacks. Mothers of the respondents seem slightly

more educated than their fathers: 46% vs. 33% for High School and 39% vs. 35% for College.

Around 55% of respondents are married with an average number of children of about 0.9.

As with most survey data, potential measurement error is possible. For example, self reported

variables such as wage and subject grade are liable to misreporting or unconscious bias. However,

most variables of interest are easily verifiable (race, gender, college decision).

Figure 5 illustrates the networks of two of the schools in Wave I (initial period), and the

properties of the networks are presented in Table 6. Only two networks are fully connected, but

most have a large component dominating the network. On average, a network is composed of

about 48 individuals, each with 3.85 friends. This coexists with a link density of about 11%, an

average path length of 3.68 and diameter of 9.08. Thus, each individual is on average 3.68 links

away from anyone in their network, with a maximum distance of 9.08 per network. Friends

tend to cluster together, with few connections across the network. The clustering coefficient

indicates that just over a third of possible triplets are closed, i.e. an individual is likely to be

connected with his friend’s friends. This is very important as it supports the assumption of

the network formation model in (2.8) that an individual’s preference for a relationship with

17Using the University of Adelaide’s Phoenix High Performance Computing service, the estimation of these 13
networks takes approximately 23 hours.
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another person is mainly based on whether both had some friends in common in an earlier

period, thus addressing Jackson’s (2013) concern. This clustering pattern is more visible in the

second graph of Figure 5, with evidence of three distinct groups. Table 7 gives a transition

matrix of friendships from period 0 to period 1. Out of 1387 friendships in period 0, only 661

(47.66%) remain in period 1. So, slightly less than half of friendships in period 0 remains in

the next period. In fact, the number of new friendships in period 1 (558) is not far below the

number of existing friendships transferred from period 0. A lot of potential friendships however

remained untapped, with 16,860 possible links18 which never formed.

Figure 5: Example of two schools’ networks in wave I

Table 6: Average Network Properties

Property Mean S.D.

Number of Nodes 48.54 26.19
Number of Links 93.77 58.08
Link Density 0.11 0.08
Average Degree 3.85 1.02
Clustering Coefficient 0.35 0.14
Number of Components 2.30 1.55
Average Path Length (of largest component) 3.68 0.91
Diameter (of largest component) 9.08 2.63

Number of Networks = 13

Table 7: Transition of friendships of the 13 independent networks

Period 1
Friends Not Friends

P
er

io
d

0

Friends 661 (3.52%) 726 (3.86%)

Not Friends 558 (2.97%) 16860 (89.66%)

We treated friendships as a binary relation and normalized the network so that the average

peer effect is equal for every individual regardless of their number of friends. In other words,

18As we consider the 13 networks independently of one another, the total number of possible links in the sample
is the sum over all 13 networks of the number of all possible links within each network.
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each of an individual’s friends is given equal weight. These are necessary and reasonable simpli-

fications of the true friendship network, and as a result we may underestimate the true influence

of peer effects.

5.2 Main results

We estimate both the model with network formation process (Model (I) of Section 4) and the

baseline model with no networks (Model (II) of Section 4). The number of replications in the

MCMC and bootstrap algorithms are the same as in Section 4.

5.2.1 Network formation and college attainment models

Table 8 presents the estimates of the parameters in the network formation model (2.8). With

the exception of the variable in ci (shy, independent, number of siblings), all other variables

are statistically significant at nominal levels ranging from 1%-10%. Homophily characteristics

matter in friendship formation. In particular, individuals select friendships based on similarity

in age, race, gender, parent’s education, grade in Math and English, and even appearance

(APER). Having been friends in the previous period (D0), or having friends in common in the

previous period (F0) are particularly strong determinants of friendship formation. Dissimilarity

in the unobserved within network characteristics has the expected negative effect on friendship

choices.

Table 9 presents the estimates of the college attendance decision parameters with both dy-

namic network formation and no network. Focusing first on the estimates with dynamic network

formation, we see that most variables are highly statistically significant. The endogenous effect

estimate is small (−0.0790) with a counter-intuitive sign but is highly significant. The estimates

of schools’ fixed effects that control for correlated effects are all highly significant, with race,

gender, Math and English grades, and parents’ education also playing a relatively important

role in college attendance decision. Most of the exogenous effects are also significant, particu-

larly having high school or college educated parents and having friends with a higher English

grade boost the likelihood of college attendance. Although being black and having higher Math

grade have a positive effect on treatment, their exogenous effects (i.e. having black friends and

friends with high Math grades) appear to negatively affect the decision to attend college. The

effect of unobserved within network characteristics, ξ, is small but significant at the 1% nomi-

nal level with the expected positive sign. The instruments are also highly significant; number

of siblings, local unemployment in 1990 and proportion of college education positively influence

college attendance decision, while local income in 1990 has a strong negative effect, as we would
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Table 8: Network formation model

variables coef. variables coef.
ci cij

Male 0.1690***
Shy −0.0563 (0.0374)

(0.0659) Female 0.0270*
Independent −0.1452 (0.0147)

(0.0997) White 0.4543***
No. of Siblings −0.0165 (0.1180)

(0.0202) Black 0.4668***
cij (0.0739)

|Agei −Agej | −0.4728*** Other race19 0.5088***
(0.0074) (0.2379)

|MathGDi −MathGDj | −0.0489*** Dij
0 2.1126***

(0.0074) (0.1187)

|EngGDi − EngGDj | −0.0987*** F ij
0 0.3986***

(0.0044) (0.0365)
|APERi −APERj | −0.0651*** |ξi − ξj | −1.1949*

(0.0148) (0.6133)
Parents: No High School −0.2256*

(0.1350)
Parents: High School 0.0998***

(0.0212)
Parents: College 0.1573***

(0.0498)

* p < 0.1, ** p < 0.05, *** p < 0.01.

expect.

It is worth noting that the parameter estimates of the misspecified model with no network

raise concerns of omitted variable bias when compared with the model with dynamic network

formation. For example, none of the instruments (number of siblings, local unemployment and

income in 1990, proportion of college education) is statistically significant. The correlated effect

estimates (group fixed effects)– the only one we can control for in this setting– are very large

but imprecise (large standard error estimates), thus rendering them statistically insignificant.

5.2.2 Marginal returns to college education

Figure 6 shows the supports of the propensity scores conditional on covariates for both the

model with network formation and the one without. The MTE is identified over some portions

of these supports. As expected, low values of the propensity scores correspond to low covariate

values20 and conversely, high covariate values are associated with high propensity scores. Figure

6b shows clearly that the model with network formation correctly assigns high propensity scores

to those who attend college. Those who do not attend college have a more diverse spread of

propensities compared to those who attend college.

The model with no network has a tendency to assign high propensity scores across all the

20Note that X contains many covariates, so in graphs we condition on the index X(β̂1 − β̂0) rather than X.
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Table 9: College decision model estimates (posterior means)

With dynamic network formation No network

vars. coefs. vars. coefs. vars. coefs. vars. coef.

Endog. effect −0.0790*** MathGD −0.0404*** Female 0.3504** School 6 −3.0399
(0.0116) (0.0041) (0.1426) (4.7828)

Female 0.3564*** EnglishGD 0.2356*** Black −0.1834 School 7 −4.1312
(0.0037) (0.0067) (0.3940) (4.7701)

Black 0.1175*** ξ 0.0585*** Other race −0.6773** School 8 −2.6549
(0.0087) (0.0154) (0.3208) (4.4685)

Other race −0.4131*** Fixed effects Parents HS 0.5542** School 9 −2.8556
(0.0115) School 1 −0.2590*** (0.2811) (4.8720)

Parents HS 0.3704*** (0.0079) Parents College 1.2467*** School 10 −2.7943
(0.0083) School 2 −0.0535*** (0.3276) (4.7991)

Parents College 1.0509*** (0.0082) Math grade 0.0092 School 11 −2.9624
(0.0069) School 3 −0.4934 (0.0550) (4.7915)

Math grade 0.0178*** (0.0086) English grade 0.2766*** School 12 −3.3964
(0.0022) School 4 −0.4567*** (0.0719) (4.8447)

English grade 0.2430*** (0.0082) No. of Siblings 0.0123 School 13 −2.8934
(0.0023) School 5 0.2997*** (0.0335) (4.8954)

No. of Siblings 0.0042*** (0.0112) Income 1990 0.1643
(0.0012) School 6 0.0016 (0.5584)

Income 1990 −0.1840*** (0.0082) Unemployment 1990 10.2607
(0.0027) School 7 −0.5592*** (10.5087)

Unemployment 1990 0.0299*** (0.0107) College Prop 1990 0.1236
(0.0073) School 8 −0.0527*** (1.5880)

College Prop 1990 0.3183*** (0.0151)
(0.0161) School 9 0.1216*** Fixed Effects

Exogenous effects (0.0084) School 1 −3.3830
(4.8337)

Female −0.0130 School 10 0.3517*** School 2 −3.4070
(0.0109) (0.0081) (4.7833)

Black −0.2249*** School 11 0.2838*** School 3 −3.8951
(0.0136) (0.0113) (4.8190)

Other race 0.4525*** School 12 0.1629*** School 4 −3.8736
(0.0176) (0.0119) (4.8138)

Parents HS 0.1602*** School 13 0.4446 School 5 −2.6730
(0.0122) (0.0095) (4.8030)

Parents College 0.5575***
(0.0127)

* p < 0.1, ** p < 0.05, *** p < 0.01.

range of covariate values (see Figure 6c), although low propensity scores are assigned to low

covariate values. Clearly, without network formation, the model is ineffective at separating

those who attend college to those who do not. If covariates were assumed exogenous, the

MTEs would be identified21 over the range (0.1063,0.9695) under Model (I), which corresponds

to (0.1435,0.9729) with Model (II). Although both models are comparable at low values of

US (although neither identifies the MTEs in this region), the model with network formation

performs better at high US (i.e. low P ) values by predicting less negative return.

Figure 7 shows the plots of the annualized22 estimated marginal returns to college education.

Again, we see that the MTE confidence bands in the model with no network are much wider

compared to the model with network formation. Focusing on the correct specification, the result

is quite striking. We see that individuals with low US values –in the neighborhood of US = 0–

(i.e., high probability of college attendance) have a high return (about 70%), while those with

high values of US–in the neighborhood of US = 1 (i.e., low probability of college attendance)

21That is, where we observe common support for both S = 1 and S = 0.
22The MTEs are divided by four to obtain annualised estimates as in Carneiro et al. (2011).
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Figure 6: Propensity scores for high school network data

(a) Support of propensity scores given covariates–
Model with networks

(b) Support of propensity scores given S = 1 and S =
0– Model with networks

(c) Support of propensity scores given covariates–
Model with no network

(d) Support of propensity scores given S = 1 and S =
0– Model with no network

have a negative return (−60%). A 70% return indicates that these individuals would expect to

have a wage 70% higher if they attended college than otherwise. We also tested the constant

slope hypothesis and the difference in LATEs for a negative slope hypothesis of the MTE curve.

The results for the model with network formation are reported in Table D.4 in the Supplemental

Appendix and demonstrate an undeniably downward slope at each point of the MTE curve.

Clearly, in this model, individuals are self-selecting into college, with those who are likely to

attend college receiving much higher returns.

Since it highly unlikely all covariates used are strictly exogenous, the MTEs are not identified

over the full support of the propensity scores given in Figure 6. The MTEs can only be identified

conditional on covariates, requiring variations in the instruments since covariates are fixed at

specific values. To draw the graphs in Figure 8, we start by computing the average covariates

(X) for values of X(β̂1 − β̂0) at the the 25th and 75th percentile of its distribution. The two

curves in each subfigure represent the MTEs evaluated at these two values of X(β̂1 − β̂0), with

the black solid segment representing the portion of the MTEs that is identified when covariates

are not assumed exogenous. The dashed green line represents the sections of the MTEs we
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Figure 7: Marginal returns to college education

(a) Model with network formation (b) Model with no network

do not identify. The three labour market variables and ξ are the instruments that are varied

to identified the MTEs. It appears from these graphs that the strength of the instruments in

identifying the MTEs is low, as the black segment of the MTE curve is short even in the model

with network formation. Interestingly, the portion of the MTEs that is identified corresponds

to the propensity scores clustering behavior observed around 0.5 to 0.8 in Figure 6b. Note

that the MTE curve is still downwards sloping in these identified regions. The MTE curve has

drastically different intercepts depending on the value we hold the covariates at. This is to be

expected, given the number of covariates in the regression, compared to the number of available

instruments. Also, note that the inclusion of the network exogenous peer effects as instruments

in Figure 8a has improved the identification of the MTE compared to the model with no network

(see Figure 8b). Clearly, using both the unobserved within network characteristics ξ and the

Figure 8: Identified support of MTEs without strict exogeneity assumption of covariates

(a) Model with network formation (b) Model with no network

exogenous peer effects as instruments offer a greater variation compared with the model with no

network. Also noticeable is that the misspecified model with no network only identifies a small
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portion of the marginal return to college education at the 25th percentile of the distribution of

the index X(β̂1 − β̂0), which is not the case for the model with network formation.

5.2.3 Marginal policy relevant returns to college education

Table 10 presents the results of the MPRTEs for the three policies indexed by α: (1) a policy α

that directly increases the probability of college attendance equally for all high school students

in the sample, i.e., Pα = P + α; (2) a policy α that proportionally increases the probability of

college attendance, i.e., Pα = (1 +α)P ; and (3) a policy α that affects one or more instruments

used in college attendance decision, i.e., Zα = Z+α. As seen, the effect of all policies is positive

and highly significant when dynamic network formation is accounted for. However, with no

network, the estimated policy impacts, albeit not statistically significant, are all negative.

Focusing on the correct specification with network formation, those induced into college

education by a small change in the instruments receive a return of around 182%. This effect

is slightly better at 184% for a policy that increases marginally and additively the propensity

scores. A policy aiming at increasing the propensity scores marginally but proportionally ap-

pears to have the smallest impact (although still large), with around 152% return to college

education.

Table 10: Marginal policy relevant returns to college education

Policy Change With network formation No network

Zα = Z + α 1.8196*** −0.1760
(0.2581) (1.8736)

Pα = P + α 1.8431*** −0.1983
(0.2667) (1.8635)

Pα = (1 + α)P 1.5215*** −0.3061
(0.2389) (1.7882)

* p < 0.1, ** p < 0.05, *** p < 0.01.

6 Conclusions

This paper develops an econometric framework that incorporates peer effects into the standard

counterfactual model. The identification of standard treatment effect measures such as the

marginal return to treatment and the marginal policy relevant treatment effect are explored

under social interactions. A Bayesian procedure is developed to estimate the model and quantify

the contribution of peer effects to the identification of these treatment effect measures. The

proposed methodology is illustrated through simulations and an empirical application on the

educational attainment model in the US.
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We find significant impacts of peer influence on the decision to take on treatment as well as

on the marginal return to treatment and on the policies aiming at encouraging individuals to

take on treatment. In particular, the exogenous effects provide strong variations in identifying

the treatment effect measures even when covariates in the potential outcome equation are kept

constant. As such, failing to account for peer effects in counterfactual analysis leads to model

misspecification, as shown in the empirical application. The proposed methodology adequately

addresses many of the complications arising from the network estimation. Wider acceptance and

use of peer effect models within the econometric field will enable to more widely contemplate and

exploit the potential role of networks in enacting and dispersing economic and social policies.
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A Appendix

B Additional tables and figures

B.1 Empirical application

Table B.1 presents the description of the variables used in the empirical application. For clarity,

we have separated them into distinction groups– outcome variable (Y ), covariates (X), and

instruments (Z).

Table B.1: Description of variables

Variable name Description

Outcome variable (Y ),
wage

Earnings reported at wave IV (individuals who do not
report exact earnings are asked to report earnings within
a range of values. We take the mid-value of this range.)

Treatment variable (S),
college attendance

Dummy variable indicating education level is at least some
college

Variables in X and Z
Age Age of participant at the time of the first wave (1993)
Female Dummy variable indicating female, male
Race Dummy variables indicating white, black or other race
School Dummy variable indicating the school of the respondent

Mother’s Education Dummy variables indicating the respondent’s mother 1.
graduated high school and 2. attended college

Father’s Education Dummy variables indicating the respondent’s father 1.
graduated high school and 2. attended college

GPA Sum of reported grades in Mathematics and English; A=4,
B=3, C=2, D=1, no grade=0

Appearance Response from the surveyor on a Likert scale to the ques-
tion “How physically attractive is the respondent?”

Personality variables
Variables on a Likert scale for Shyness and Independence
(E.g. Response to the question “How much do you agree
with the statement ‘You are Shy.’”

Variables in Z, not X
Number of Siblings Variable of the number of reported siblings
Local income at wave II Income per capita at the local tract area level in 1990
Local unemployment at
wave II Unemployment at the local tract area level in 1990

Local proportion with a
college degree at wave II

Proportion of residents over 25 who hold a bachelor degree
or higher, taken at the local tract area level

Variables in X, not Z

Married Dummy variable indicating if the respondent has ever been
married

Number of Kids Variable of the number of reported children
Local income at wave IV Income per capita at the local tract area level in 2008
Local unemployment at
wave IV Unemployment at the local tract area level in 2008
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Table B.2 reports the summary statistics of the key variables in Table B.1. About 71% of

individuals in the sample attended college and the sample is predominantly white individuals

(84%) with only 14% of blacks. Mothers of the respondents seem slightly more educated than

their fathers: 46% vs. 33% for High School and 39% vs. 35% for College. Around 55% of

respondents are married with an average number of children of about 0.9.

Table B.2: Data Summary

Variable Name Min Max Mean SD

Wage Y ($) 0 300000 30386 27531
College Attendance (S) 0 1 0.71 0.45
Age (months) 130 222 162.1 18.92
Male 0 1 0.47 0.50
Female 0 1 0.53 0.50
Race:
White 0 1 0.84 0.36
Black 0 1 0.14 0.35
Other race 0 1 0.05 0.22
Mother’s education:
High School 0 1 0.46 0.50
College 0 1 0.39 0.49
Less than High School 0 1 0.10 0.30
Father’s education:
High School 0 1 0.33 0.48
College 0 1 0.35 0.47
Less than High School 0 1 0.11 0.31
Grade in Maths 0 4 2.54 1.34
Grade in English 0 4 2.84 1.14
Appearance 1 5 3.65 0.78
Shy 1 5 3.31 1.26
Independent 1 5 1.80 0.76
Instruments:
Number of siblings 0 14 2.59 1.99
Local income 1990 3817 28501 11155 4090
Local unem. 1993 0.02 0.15 0.07 0.02
College ed. 1990 0.03 0.48 0.18 0.11
Variables in X only:
Local income 2008 8500 94950 23419 10230
Local unem. 2008 0 0.35 0.07 0.04
Married 0 1 0.55 0.50
Number of Children 0 5 0.90 1.08

Table B.3: Test of equality of LATEs over different intervals for high school networks

Ranges of US for LATEj (0,0.04) (0.08,0.12) (0.16,0.20) (0.24,0.28) (0.32,0.36) (0.40,0.44)
Ranges of US for LATEj+1 (0.08,0.12) (0.16,0.20) (0.24,0.28) (0.32,0.36) (0.40,0.44) (0.48,0.52)

Difference in LATEs 0.2325 0.2497 0.2698 0.2929 0.3194 0.3496
p-value 0 0 0 0 0 0

Ranges of US for LATEj (0.48,0.52) (0.56,0.60) (0.64,0.68) (0.72,0.76) (0.80,0.84) (0.88,0.92)
Ranges of US for LATEj+1 (0.56,0.60) (0.64,0.68) (0.72,0.76) (0.80,0.84) (0.88,0.92) (0.96,1)

Difference in LATEs 0.3838 0.4222 0.4650 0.5124 0.5646 0.6216
p-value 0 0 0 0 0 0

joint p-value 0
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Figures B.1-B.2 report the MCMC plots of parameters’ posterior distributions.

Figure B.1: Network formation– MCMC plots for high school networks

(a) Shy (b) Independent (c) Ageg,i −Ageg,j (d) GPAg,i −GPAg,j

(e) Father College (f) Female (g) Gg−
(h) Fg−

(i) δ (j) ξ43 (k) ξ101 (l) ξ151
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Figure B.2: Treatment decision– MCMC plots for high school networks

(a) Endogenous (b) Female (c) Parents: College (d) Exogenous: Female

(e) Exogenous: GPA (f) Income 1990
(g) College Proportion
1990 (h) ξg

(i) α3 (j) α5
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B.2 Monte Carlo experiments

B.2.1 MTE plots

Figure B.3: ρx = 0.3– Support of P (Z,G) given X (left)– Support of P (Z,G) for S = 0 and S = 1 (right)

(a) Model (I) (b) Model (I)

(c) Model (II) (d) Model (II)

Figure B.4: MTE with ρx = 0.3

Model (I) Model (II)
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B.3 MCMC plots of parameters’ posterior distributions

Figure B.5: Network formation model– MCMC plots of posterior distributions

(a) θ1 (b) θ3,1 (c) θ3,2 (d) θ3,3

(e) θ4 (f) θ5 (g) δ

(h) ξ43 (i) ξ101 (j) ξ151
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Figure B.6: Treatment decision– MCMC plots of posterior distributions

(a) γ1 (b) γ0 (c) γ2,1 (d) γ2,2

(e) γ2,3 (f) γ3,1 (g) γ3,2 (h) γ3,3

(i) α1 (j) α2
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